Twistor Geometry of Null Foliations in Complex Euclidean Space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094689" target="_blank" >RIV/00216224:14310/17:00094689 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3842/SIGMA.2017.005" target="_blank" >http://dx.doi.org/10.3842/SIGMA.2017.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2017.005" target="_blank" >10.3842/SIGMA.2017.005</a>
Alternative languages
Result language
angličtina
Original language name
Twistor Geometry of Null Foliations in Complex Euclidean Space
Original language description
We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface $mathcal{Q}^n$ of dimension $n geq 3$, and its twistor space $mathbb{PT}$, defined to be the space of all linear subspaces of maximal dimension of $mathcal{Q}^n$. Viewing complex Euclidean space $mathbb{CE}^n$ as a dense open subset of $mathval{Q}^n$ , we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on $mathbb{CE}^n$ can be constructed in terms of complex submanifolds of $mathbb{PT}$. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing– Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GP14-27885P" target="_blank" >GP14-27885P: Almost null structures in pseudo-riemannian geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
UA - UKRAINE
Number of pages
42
Pages from-to
—
UT code for WoS article
000393827700001
EID of the result in the Scopus database
—