Normal Forms and Symmetries of Real Hypersurfaces of Finite Type in C-2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00067030" target="_blank" >RIV/00216224:14310/13:00067030 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Normal Forms and Symmetries of Real Hypersurfaces of Finite Type in C-2
Original language description
We give a complete description of normal forms for real hypersurfaces of finite type in C-2 with respect to their holomorphic symmetry algebras. The normal forms include refined versions of the constructions by Chern-Moser, Stanton, Kolar. We use the method of simultaneous normalisation of the equations and symmetries that goes back to Lie and Cartan. Our approach leads to a unique canonical equation of the hypersurface for every type of its symmetry algebra. Moreover, even in the Levi-degenerate case,our construction implies convergence of the transformation to the normal form if the dimension of the symmetry algebra is at least two. We illustrate our results by explicitly normalising Cartan's homogeneous hypersurfaces and their automorphisms.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INDIANA UNIVERSITY MATHEMATICS JOURNAL
ISSN
0022-2518
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
1-32
UT code for WoS article
000329473200001
EID of the result in the Scopus database
—