Local equivalence of symmetric hypersurfaces in C^2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00043530" target="_blank" >RIV/00216224:14310/10:00043530 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Local equivalence of symmetric hypersurfaces in C^2
Original language description
The Chern-Moser normal form and its analog on finite type hypersurfaces in general do not respect symmetries. Extending the work of N. K. Stanton, we consider the local equivalence problem for symmetric Levi degenerate hypersurfaces of finite type in $ mathbb{C}^2$. The results give complete normalizations for such hypersurfaces, which respect the symmetries. In particular, they apply to tubes and rigid hypersurfaces, providing an effective classification. The main tool is a complete normal form constructed for a general hypersurface with a tube model. As an application, we describe all biholomorphic maps between tubes, answering a question posed by N. Hanges. Similar results for hypersurfaces admitting nontransversal symmetries are obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
362
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—