All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local equivalence of symmetric hypersurfaces in C^2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00043530" target="_blank" >RIV/00216224:14310/10:00043530 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local equivalence of symmetric hypersurfaces in C^2

  • Original language description

    The Chern-Moser normal form and its analog on finite type hypersurfaces in general do not respect symmetries. Extending the work of N. K. Stanton, we consider the local equivalence problem for symmetric Levi degenerate hypersurfaces of finite type in $ mathbb{C}^2$. The results give complete normalizations for such hypersurfaces, which respect the symmetries. In particular, they apply to tubes and rigid hypersurfaces, providing an effective classification. The main tool is a complete normal form constructed for a general hypersurface with a tube model. As an application, we describe all biholomorphic maps between tubes, answering a question posed by N. Hanges. Similar results for hypersurfaces admitting nontransversal symmetries are obtained.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    362

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database