Convergent normal form for real hypersurfaces at a generic Levi-degeneracy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107482" target="_blank" >RIV/00216224:14310/19:00107482 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/view/j/crelle.2019.2019.issue-749/crelle-2016-0034/crelle-2016-0034.xml" target="_blank" >https://www.degruyter.com/view/j/crelle.2019.2019.issue-749/crelle-2016-0034/crelle-2016-0034.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/crelle-2016-0034" target="_blank" >10.1515/crelle-2016-0034</a>
Alternative languages
Result language
angličtina
Original language name
Convergent normal form for real hypersurfaces at a generic Levi-degeneracy
Original language description
We construct a complete convergent normal form for a real hypersurface in C^N for N>1 at a generic Levi-degeneracy. This seems to be the first convergent normal form for a Levi-degenerate hypersurface. As an application of the convergence result, we obtain an explicit description of the moduli space of germs of real-analytic hypersurfaces with a generic Levi-degeneracy. As another application, we obtain, in the spirit of the work of Chern and Moser, distinguished curves inside the Levi-degeneracy set that we call degenerate chains.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-19437S" target="_blank" >GA17-19437S: Classification problems for real hypersurfaces in complex space</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal für die Reine und Angewandte Mathematik
ISSN
0075-4102
e-ISSN
1435-5345
Volume of the periodical
749
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
201-225
UT code for WoS article
000462744900006
EID of the result in the Scopus database
2-s2.0-85064228323