Comparison theorems for self-adjoint linear Hamiltonian eigenvalue problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073405" target="_blank" >RIV/00216224:14310/14:00073405 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201200314" target="_blank" >http://dx.doi.org/10.1002/mana.201200314</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201200314" target="_blank" >10.1002/mana.201200314</a>
Alternative languages
Result language
angličtina
Original language name
Comparison theorems for self-adjoint linear Hamiltonian eigenvalue problems
Original language description
In this work we derive new comparison results for (finite) eigenvalues of two self-adjoint linear Hamiltonian eigenvalue problems. The coefficient matrices depend on the spectral parameter nonlinearly and the spectral parameter is present also in the boundary conditions. We do not impose any controllability or strict normality assumptions. Our method is based on a generalization of the Sturmian comparison theorem for such systems. The results are new even for the Dirichlet boundary conditions, for linear Hamiltonian systems depending linearly on the spectral parameter, and for Sturm-Liouville eigenvalue problems with nonlinear dependence on the spectral parameter.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
287
Issue of the periodical within the volume
5-6
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
704-716
UT code for WoS article
000333700800016
EID of the result in the Scopus database
—