A colimit decomposition for homotopy algebras in Cat
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073522" target="_blank" >RIV/00216224:14310/14:00073522 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10485-012-9293-4" target="_blank" >http://dx.doi.org/10.1007/s10485-012-9293-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-012-9293-4" target="_blank" >10.1007/s10485-012-9293-4</a>
Alternative languages
Result language
angličtina
Original language name
A colimit decomposition for homotopy algebras in Cat
Original language description
Badzioch showed that in the category of simplicial sets each homotopy algebra of a Lawvere theory is weakly equivalent to a strict algebra. In seeking to extend this result to other contexts Rosický observed a key point to be that each homotopy colimit in SSet admits a decomposition into a homotopy sifted colimit of finite coproducts, and asked the author whether a similar decomposition holds in the 2-category of categories Cat. Our purpose in the present paper is to show that this is the case.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
13-28
UT code for WoS article
000331045200002
EID of the result in the Scopus database
—