Discrete oscillation theorems and weighted focal points for Hamiltonian difference systems with nonlinear dependence on a spectral parameter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00080632" target="_blank" >RIV/00216224:14310/15:00080632 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aml.2014.12.003" target="_blank" >http://dx.doi.org/10.1016/j.aml.2014.12.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2014.12.003" target="_blank" >10.1016/j.aml.2014.12.003</a>
Alternative languages
Result language
angličtina
Original language name
Discrete oscillation theorems and weighted focal points for Hamiltonian difference systems with nonlinear dependence on a spectral parameter
Original language description
In this paper we generalize oscillation theorems for discrete Hamiltonian eigenvalue problems with nonlinear dependence on the spectral parameter. In our version of the discrete oscillation theorems, we incorporate the case when the block B of the discrete Hamiltonian H has nonconstant rank with respect to the spectral parameter. We introduce a new notion of weighted focal points for conjoined bases of the Hamiltonian difference systems and we show that the number of weighted focal points plays the roleof the classical number of focal points in the discrete oscillation theorems for the Hamiltonian spectral problems with the nonconstant rank of B.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematical Letters
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
MAY
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
114-119
UT code for WoS article
000350085500020
EID of the result in the Scopus database
—