Non-oscillation of half-linear differential equations with periodic coefficients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00080667" target="_blank" >RIV/00216224:14310/15:00080667 - isvavai.cz</a>
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3311" target="_blank" >http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3311</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2015.1.1" target="_blank" >10.14232/ejqtde.2015.1.1</a>
Alternative languages
Result language
angličtina
Original language name
Non-oscillation of half-linear differential equations with periodic coefficients
Original language description
We consider half-linear Euler type differential equations with general periodic coefficients. It is well-known that these equations are conditionally oscillatory, i.e., there exists a border value given by their coefficients which separates oscillatory equations from non-oscillatory ones. In this paper, we study oscillatory properties in the border case. More precisely, we prove that the considered equations are non-oscillatory in this case. Our results cover the situation when the periodic coefficientsdo not have any common period.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
21
Pages from-to
1-21
UT code for WoS article
000350397300001
EID of the result in the Scopus database
—