Prüfer angle and non-oscillation of linear equations with quasiperiodic data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107218" target="_blank" >RIV/00216224:14310/19:00107218 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00605-018-1232-5" target="_blank" >https://link.springer.com/article/10.1007/s00605-018-1232-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-018-1232-5" target="_blank" >10.1007/s00605-018-1232-5</a>
Alternative languages
Result language
angličtina
Original language name
Prüfer angle and non-oscillation of linear equations with quasiperiodic data
Original language description
We consider the Sturm-Liouville differential equations with a power of the independent variable and sums of periodic functions as coefficients (including the case when the periodic coefficients do not have any common period). Using known results, one can show that the studied equations are conditionally oscillatory, i.e., there exists a threshold value which can be expressed by the coefficients and which separates oscillatory equations from non-oscillatory ones. It is very complicated to specify the behaviour of the treated equations in the borderline case. In this paper, applying the method of the modified Prüfer angle, we answer this question and we prove that the considered equations are non-oscillatory in the critical borderline case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotic theory of ordinary and fractional differential equations and their numerical discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MONATSHEFTE FUR MATHEMATIK
ISSN
0026-9255
e-ISSN
1436-5081
Volume of the periodical
189
Issue of the periodical within the volume
1
Country of publishing house
AT - AUSTRIA
Number of pages
24
Pages from-to
101-124
UT code for WoS article
000467494400006
EID of the result in the Scopus database
2-s2.0-85056889336