A cocategorical obstruction to tensor products of Gray-categories.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00081026" target="_blank" >RIV/00216224:14310/15:00081026 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/30/11/30-11abs.html" target="_blank" >http://www.tac.mta.ca/tac/volumes/30/11/30-11abs.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A cocategorical obstruction to tensor products of Gray-categories.
Original language description
It was argued by Crans that it is too much to ask that the category of Gray-categories admit a well behaved monoidal biclosed structure. We make this precise by establishing undesirable properties that any such monoidal biclosed structure must have. In particular we show that there does not exist any tensor product making the model category of Gray-categories into a monoidal model category.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
11
Country of publishing house
CA - CANADA
Number of pages
23
Pages from-to
387-409
UT code for WoS article
000355309900011
EID of the result in the Scopus database
—