A skew approach to enrichment for Gray-categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134332" target="_blank" >RIV/00216224:14310/23:00134332 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.aim.2023.109327" target="_blank" >https://doi.org/10.1016/j.aim.2023.109327</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2023.109327" target="_blank" >10.1016/j.aim.2023.109327</a>
Alternative languages
Result language
angličtina
Original language name
A skew approach to enrichment for Gray-categories
Original language description
It is well known that the category of Gray-categories does not admit a monoidal biclosed structure that models weak higher-dimensional transformations. In this paper, the first of a series on the topic, we describe several skew monoidal closed structures on the category of Gray-categories, one of which captures higher lax transformations, and another which models higher pseudo-transformations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Volume of the periodical
434
Issue of the periodical within the volume
December 2023
Country of publishing house
US - UNITED STATES
Number of pages
92
Pages from-to
1-92
UT code for WoS article
001111350500001
EID of the result in the Scopus database
2-s2.0-85173283043