All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A skew approach to enrichment for Gray-categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134332" target="_blank" >RIV/00216224:14310/23:00134332 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.aim.2023.109327" target="_blank" >https://doi.org/10.1016/j.aim.2023.109327</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2023.109327" target="_blank" >10.1016/j.aim.2023.109327</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A skew approach to enrichment for Gray-categories

  • Original language description

    It is well known that the category of Gray-categories does not admit a monoidal biclosed structure that models weak higher-dimensional transformations. In this paper, the first of a series on the topic, we describe several skew monoidal closed structures on the category of Gray-categories, one of which captures higher lax transformations, and another which models higher pseudo-transformations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Volume of the periodical

    434

  • Issue of the periodical within the volume

    December 2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    92

  • Pages from-to

    1-92

  • UT code for WoS article

    001111350500001

  • EID of the result in the Scopus database

    2-s2.0-85173283043