Centers and homotopy centers in enriched monoidal categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00377482" target="_blank" >RIV/67985840:_____/12:00377482 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2012.04.011" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.04.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2012.04.011" target="_blank" >10.1016/j.aim.2012.04.011</a>
Alternative languages
Result language
angličtina
Original language name
Centers and homotopy centers in enriched monoidal categories
Original language description
We consider a theory of centers and homotopycenters of monoids in monoidalcategories which themselves are enriched in duoidal categories. The duoidal categories (introduced by Aguiar and Mahajan under the name 2-monoidalcategories) are categories with two monoidal structures which are related by some, not necessary invertible, coherence morphisms. Centers of monoids in this sense include many examples which are not classical.? In particular, the 2-category of categories is an example of a center in oursense. Examples of homotopycenter (analogue of the classical Hochschild complex) include the -category of 2-categories, 2-functors and pseudonatural transformations and Tamarkin?s homotopy 2-category of dg-categories, dg-functors and coherent dg-transformations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
230
Issue of the periodical within the volume
4-6
Country of publishing house
US - UNITED STATES
Number of pages
48
Pages from-to
1811-1858
UT code for WoS article
000305498300009
EID of the result in the Scopus database
—