All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Operadic categories and duoidal Deligne's conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00447557" target="_blank" >RIV/67985840:_____/15:00447557 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/15:10335186

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.aim.2015.07.008" target="_blank" >http://dx.doi.org/10.1016/j.aim.2015.07.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2015.07.008" target="_blank" >10.1016/j.aim.2015.07.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Operadic categories and duoidal Deligne's conjecture

  • Original language description

    The purpose of this paper is two-fold. In Part 1 we introduce a new theory of operadic categories and their operads. This theory is, in our opinion, of an independent value. In Part 2 we use this new theory together with our previous results to prove that multiplicative 1-operads in duoidal categories admit, under some mild conditions on the underlying monoidal category, natural actions of contractible 2-operads. The result of D. Tamarkin on the structure of dg-categories, as well as the classical Deligne conjecture for the Hochschild cohomology, is a particular case of this statement.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    285

  • Issue of the periodical within the volume

    5 November

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    58

  • Pages from-to

    1630-1687

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84941686952