Skew structures in 2-category theory and homotopy theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095833" target="_blank" >RIV/00216224:14310/17:00095833 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs40062-015-0121-z" target="_blank" >http://link.springer.com/article/10.1007%2Fs40062-015-0121-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40062-015-0121-z" target="_blank" >10.1007/s40062-015-0121-z</a>
Alternative languages
Result language
angličtina
Original language name
Skew structures in 2-category theory and homotopy theory
Original language description
We study Quillen model categories equipped with a monoidal skew closed structure that descends to a genuine monoidal closed structure on the homotopy category. Our examples are 2-categorical and include permutative categories and bicategories. Using the skew framework, we adapt Eilenberg and Kelly’s theorem relating monoidal and closed structure to the homotopical setting. This is applied to the construction of monoidal bicategories arising from the pseudo-commutative 2-monads of Hyland and Power.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Homotopy and Related Structures
ISSN
2193-8407
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
51
Pages from-to
31-81
UT code for WoS article
000401575900003
EID of the result in the Scopus database
2-s2.0-85013655437