All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Skew structures in 2-category theory and homotopy theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095833" target="_blank" >RIV/00216224:14310/17:00095833 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/article/10.1007%2Fs40062-015-0121-z" target="_blank" >http://link.springer.com/article/10.1007%2Fs40062-015-0121-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40062-015-0121-z" target="_blank" >10.1007/s40062-015-0121-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Skew structures in 2-category theory and homotopy theory

  • Original language description

    We study Quillen model categories equipped with a monoidal skew closed structure that descends to a genuine monoidal closed structure on the homotopy category. Our examples are 2-categorical and include permutative categories and bicategories. Using the skew framework, we adapt Eilenberg and Kelly’s theorem relating monoidal and closed structure to the homotopical setting. This is applied to the construction of monoidal bicategories arising from the pseudo-commutative 2-monads of Hyland and Power.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Homotopy and Related Structures

  • ISSN

    2193-8407

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    51

  • Pages from-to

    31-81

  • UT code for WoS article

    000401575900003

  • EID of the result in the Scopus database

    2-s2.0-85013655437