All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Braided skew monoidal categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00117370" target="_blank" >RIV/00216224:14310/20:00117370 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tac.mta.ca/tac/volumes/35/2/35-02.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/35/2/35-02.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Braided skew monoidal categories

  • Original language description

    We introduce the notion of a braiding on a skew monoidal category, whose curious feature is that the defining isomorphisms involve three objects rather than two. Examples are shown to arise from 2-category theory and from bialgebras. In order to describe the 2-categorical examples, we take a multicategorical approach. We explain how certain braided skew monoidal structures in the 2-categorical setting give rise to braided monoidal bicategories. For the bialgebraic examples, we show that, for a skew monoidal category arising from a bialgebra, braidings on the skew monoidal category are in bijection with cobraidings (also known as coquasitriangular structures) on the bialgebra.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CA - CANADA

  • Number of pages

    45

  • Pages from-to

    19-63

  • UT code for WoS article

    000594117700002

  • EID of the result in the Scopus database

    2-s2.0-85078857248