A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00085925" target="_blank" >RIV/00216224:14310/15:00085925 - isvavai.cz</a>
Result on the web
<a href="http://www.aucgeographica.cz/index.php/AUC_Geographica/article/view/98/pdf_56" target="_blank" >http://www.aucgeographica.cz/index.php/AUC_Geographica/article/view/98/pdf_56</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/23361980.2015.94" target="_blank" >10.14712/23361980.2015.94</a>
Alternative languages
Result language
angličtina
Original language name
A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
Original language description
Accurate and updated land cover maps provide crucial basic information in a number of important enterprises, with sustainable development and regional planning far from the least of them. Remote sensing is probably the most efficient approach to obtaining a land cover map. However, certain intrinsic limitations limit the accuracy of automatic approaches to image classification. Classifications within highly heterogeneous urban areas are especially challenging. This study makes a presentation of multilayer perceptron (MLP), an artificial neural network (ANN), as an applicable approach to image classification. Optimal MLP architecture parameters were established by means of a training set. The resulting network was used to classify a sub-scene within ASTER imagery. The results were evaluated against a test dataset. The overall accuracy of classification was 94.8%. This is comparable to classification results from a maximum likelihood classifier (MLC) used for the same image.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Carolinae Geographica
ISSN
0300-5402
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
153-163
UT code for WoS article
—
EID of the result in the Scopus database
—