All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algebraic weak factorisation systems II: categories of weak maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00087740" target="_blank" >RIV/00216224:14310/16:00087740 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jpaa.2015.06.003" target="_blank" >http://dx.doi.org/10.1016/j.jpaa.2015.06.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2015.06.003" target="_blank" >10.1016/j.jpaa.2015.06.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algebraic weak factorisation systems II: categories of weak maps

  • Original language description

    We investigate the categories of weak maps associated to an algebraic weak factorisation system (awfs) in the sense of Grandis–Tholen [14]. For any awfs on a category with an initial object, cofibrant replacement forms a comonad, and the category of (left) weak maps associated to the awfs is by definition the Kleisli category of this comonad. We exhibit categories of weak maps as a kind of “homotopy category”, that freely adjoins a section for every “acyclic fibration” (= right map) of the awfs; and using this characterisation, we give an alternate description of categories of weak maps in terms of spans with left leg an acyclic fibration. We moreover show that the 2-functor sending each awfs on a suitable category to its cofibrant replacement comonad has a fully faithful right adjoint: so exhibiting the theory of comonads, and dually of monads, as incorporated into the theory of awfs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

  • Volume of the periodical

    220

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    27

  • Pages from-to

    148-174

  • UT code for WoS article

    000362138300007

  • EID of the result in the Scopus database