The circular units and the Stickelberger ideal of a cyclotomic field revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00088027" target="_blank" >RIV/00216224:14310/16:00088027 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/aa8009-4-2016" target="_blank" >http://dx.doi.org/10.4064/aa8009-4-2016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/aa8009-4-2016" target="_blank" >10.4064/aa8009-4-2016</a>
Alternative languages
Result language
angličtina
Original language name
The circular units and the Stickelberger ideal of a cyclotomic field revisited
Original language description
The aim of this paper is a new construction of bases of the group of circular units and of the Stickelberger ideal for a family of abelian fields containing all cyclotomic fields, namely for any compositum of imaginary abelian fields, each ramified only at one prime. In contrast to the previous papers on this topic our approach consists in an explicit construction of Ennola relations. This gives an explicit description of the torsion parts of odd and even universal ordinary distributions, but it also allows us to give a shorter proof that the given set of elements is a basis. Moreover we obtain a presentation of the group of circular numbers for any field in the above mentioned family.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0276" target="_blank" >GAP201/11/0276: Ideal class groups of algebraic number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Arithmetica
ISSN
0065-1036
e-ISSN
—
Volume of the periodical
174
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
22
Pages from-to
217-238
UT code for WoS article
000384721600002
EID of the result in the Scopus database
—