All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The circular units and the Stickelberger ideal of a cyclotomic field revisited

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00088027" target="_blank" >RIV/00216224:14310/16:00088027 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/aa8009-4-2016" target="_blank" >http://dx.doi.org/10.4064/aa8009-4-2016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/aa8009-4-2016" target="_blank" >10.4064/aa8009-4-2016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The circular units and the Stickelberger ideal of a cyclotomic field revisited

  • Original language description

    The aim of this paper is a new construction of bases of the group of circular units and of the Stickelberger ideal for a family of abelian fields containing all cyclotomic fields, namely for any compositum of imaginary abelian fields, each ramified only at one prime. In contrast to the previous papers on this topic our approach consists in an explicit construction of Ennola relations. This gives an explicit description of the torsion parts of odd and even universal ordinary distributions, but it also allows us to give a shorter proof that the given set of elements is a basis. Moreover we obtain a presentation of the group of circular numbers for any field in the above mentioned family.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F11%2F0276" target="_blank" >GAP201/11/0276: Ideal class groups of algebraic number fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Arithmetica

  • ISSN

    0065-1036

  • e-ISSN

  • Volume of the periodical

    174

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    22

  • Pages from-to

    217-238

  • UT code for WoS article

    000384721600002

  • EID of the result in the Scopus database