HIGHER ORDER SYMMETRIES OF REAL HYPERSURFACES IN C-3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00094002" target="_blank" >RIV/00216224:14310/16:00094002 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/proc/13090" target="_blank" >http://dx.doi.org/10.1090/proc/13090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/13090" target="_blank" >10.1090/proc/13090</a>
Alternative languages
Result language
angličtina
Original language name
HIGHER ORDER SYMMETRIES OF REAL HYPERSURFACES IN C-3
Original language description
We study nonlinear automorphisms of Levi degenerate hypersurfaces of finite multitype. By results of Kolar, Meylan, and Zaitsev in 2014, the Lie algebra of infinitesimal CR automorphisms may contain a graded component consisting of nonlinear vector fields of arbitrarily high degree, which has no analog in the classical Levi nondegenerate case, or in the case of finite type hypersurfaces in C-2. We analyze this phenomenon for hypersurfaces of finite Catlin multitype with holomorphically nondegenerate models in complex dimension three. The results provide a complete classification of such manifolds. As a consequence, we show on which hypersurfaces 2-jets are not sufficient to determine an automorphism. The results also confirm a conjecture about the origin of nonlinear automorphisms of Levi degenerate hypersurfaces, formulated by the first author for an AIM workshop in 2010.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0003" target="_blank" >EE2.3.20.0003: Algebraic methods in Geometry with views towards Applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
144
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
4807-4818
UT code for WoS article
000384000300024
EID of the result in the Scopus database
—