All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Temperature-dependent dispersion model of float zone crystalline silicon

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094432" target="_blank" >RIV/00216224:14310/17:00094432 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0169433217303720" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169433217303720</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apsusc.2017.02.021" target="_blank" >10.1016/j.apsusc.2017.02.021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Temperature-dependent dispersion model of float zone crystalline silicon

  • Original language description

    In this paper, we present the temperature dependent dispersion model of float zone crystalline silicon. The theoretical background for valence electronic excitations is introduced in the theoretical part of this paper. This model is based on application of sum rules and parametrization of transition strength functions corresponding to the individual elemental phonon and electronic excitations. The parameters of the model are determined by fitting ellipsometric and spectrophotometric experimental data in the spectral range from far infrared (70 cm-1) to extreme ultraviolet (40 eV). The ellipsometric data were measured in the temperature range 5-700 K. The excitations of the valence electrons to the conduction band are divided into the indirect and direct electronic transitions. The indirect transitions are modeled by truncated Lorentzian terms, whereas the direct transitions are modeled using Gaussian broadened piecewise smooth functions representing 3D and 2D van Hove singularities modified by excitonic effects. Since the experimental data up to high energies (40 eV) are available, we are able to determine the value of the effective number of valence electrons. The Tauc-Lorentz dispersion model is used for modeling high energy electron excitations. Two slightly different values of the effective number of valence electrons are obtained for the Jellison-Modine (4.51) and Campi-Coriasso (4.37) parametrization. Our goal is to obtain the model of dielectric response of crystalline silicon which depends only on photon energy, temperature and small number of material parameters, e.g. the concentration of substituted carbon and interstitial oxygen. The model presented in this paper is accurate enough to replace tabulated values of c-Si optical constants used in the optical characterization of thin films placed onto silicon substrates. The spectral dependencies of the optical constants obtained in our work are compared to results obtained by other authors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Surface Science

  • ISSN

    0169-4332

  • e-ISSN

  • Volume of the periodical

    421

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    15

  • Pages from-to

    405-419

  • UT code for WoS article

    000408756700023

  • EID of the result in the Scopus database