Principal solution in Weyl-Titchmarsh theory for second order Sturm-Liouville equation on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094566" target="_blank" >RIV/00216224:14310/17:00094566 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14232/ejqtde.2017.1.2" target="_blank" >http://dx.doi.org/10.14232/ejqtde.2017.1.2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2017.1.2" target="_blank" >10.14232/ejqtde.2017.1.2</a>
Alternative languages
Result language
angličtina
Original language name
Principal solution in Weyl-Titchmarsh theory for second order Sturm-Liouville equation on time scales
Original language description
A connection between the oscillation theory and the Weyl--Titchmarsh theory for the second order Sturm--Liouville equation on time scales is established by using the principal solution. In particular, it is shown that the Weyl solution coincides with the principal solution in the limit point case, and consequently the square integrability of the Weyl solution is obtained. Moreover, both limit point and oscillatory criteria are derived in the case of real-valued coefficients, while a~generalization of the invariance of the limit circle case is proven for complex-valued coefficients. Several of these results are new even in the discrete time case. Finally, some illustrative examples are provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
18
Pages from-to
1-18
UT code for WoS article
000393036200001
EID of the result in the Scopus database
—