All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On square integrable solutions and principal and antiprincipal solutions for linear Hamiltonian systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100715" target="_blank" >RIV/00216224:14310/18:00100715 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10231-017-0679-7" target="_blank" >http://dx.doi.org/10.1007/s10231-017-0679-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-017-0679-7" target="_blank" >10.1007/s10231-017-0679-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On square integrable solutions and principal and antiprincipal solutions for linear Hamiltonian systems

  • Original language description

    New results in the Weyl-Titchmarsh theory for linear Hamiltonian differential systems are derived by using principal and antiprincipal solutions at infinity. In particular, a non-limit circle case criterion is established and a close connection between the Weyl solution and the minimal principal solution at infinity is shown in the limit point case. In addition, the square integrability of the columns of the minimal principal solution at infinity is investigated. All results are obtained without any controllability assumption. Several illustrative examples are also provided.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata. Series IV

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Volume of the periodical

    197

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    24

  • Pages from-to

    283-306

  • UT code for WoS article

    000422795600015

  • EID of the result in the Scopus database

    2-s2.0-85026917641