On square integrable solutions and principal and antiprincipal solutions for linear Hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100715" target="_blank" >RIV/00216224:14310/18:00100715 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10231-017-0679-7" target="_blank" >http://dx.doi.org/10.1007/s10231-017-0679-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-017-0679-7" target="_blank" >10.1007/s10231-017-0679-7</a>
Alternative languages
Result language
angličtina
Original language name
On square integrable solutions and principal and antiprincipal solutions for linear Hamiltonian systems
Original language description
New results in the Weyl-Titchmarsh theory for linear Hamiltonian differential systems are derived by using principal and antiprincipal solutions at infinity. In particular, a non-limit circle case criterion is established and a close connection between the Weyl solution and the minimal principal solution at infinity is shown in the limit point case. In addition, the square integrability of the columns of the minimal principal solution at infinity is investigated. All results are obtained without any controllability assumption. Several illustrative examples are also provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annali di Matematica Pura ed Applicata. Series IV
ISSN
0373-3114
e-ISSN
1618-1891
Volume of the periodical
197
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
24
Pages from-to
283-306
UT code for WoS article
000422795600015
EID of the result in the Scopus database
2-s2.0-85026917641