Reid's construction of minimal principal solution at infinity for linear Hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00089096" target="_blank" >RIV/00216224:14310/16:00089096 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-32857-7_34" target="_blank" >http://dx.doi.org/10.1007/978-3-319-32857-7_34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-32857-7_34" target="_blank" >10.1007/978-3-319-32857-7_34</a>
Alternative languages
Result language
angličtina
Original language name
Reid's construction of minimal principal solution at infinity for linear Hamiltonian systems
Original language description
Recently the authors introduced a theory of principal solutions at infinity for nonoscillatory linear Hamiltonian systems in the absence of the complete controllability assumption. In this theory the so-called minimal principal solution at infinity plays a distinguished role (the minimality refers to the rank of the first component of the solution). In this paper we show that the minimal principal solution at infinity can be obtained by a suitable generalization of the Reid construction of the principal solution known in the controllable case. Our new result points to some applications of the minimal principal solution at infinity e.g. in the spectral theory of linear Hamiltonian systems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Differential and Difference Equations with Applications: ICDDEA, Amadora, Portugal, May 2015, Selected Contributions
ISBN
9783319328553
ISSN
2194-1009
e-ISSN
—
Number of pages
11
Pages from-to
359-369
Publisher name
Springer
Place of publication
NEW YORK
Event location
Amadora
Event date
Jan 1, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000391876600034