Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073432" target="_blank" >RIV/00216224:14310/14:00073432 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10884-013-9342-1" target="_blank" >http://dx.doi.org/10.1007/s10884-013-9342-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10884-013-9342-1" target="_blank" >10.1007/s10884-013-9342-1</a>
Alternative languages
Result language
angličtina
Original language name
Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems
Original language description
In this paper we open a new direction in the study of principal solutions for nonoscillatory linear Hamiltonian systems. In the absence of the controllability assumption, we introduce the minimal principal solution at infinity, which is a generalizationof the classical principal solution (sometimes called the recessive solution) for controllable systems introduced by W.T.Reid, P.Hartman, and/or W.A.Coppel. The term ``minimal'' refers to the rank of the solution. We show that the minimal principal solution is unique (up to a right nonsingular multiple) and state its basic properties. We also illustrate our new theory by several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Dynamics and Differential Equations
ISSN
1040-7294
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
35
Pages from-to
57-91
UT code for WoS article
000332834300003
EID of the result in the Scopus database
—