All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antiprincipal solutions at infinity for symplectic systems on time scales

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114213" target="_blank" >RIV/00216224:14310/20:00114213 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8447" target="_blank" >http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8447</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14232/ejqtde.2020.1.44" target="_blank" >10.14232/ejqtde.2020.1.44</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antiprincipal solutions at infinity for symplectic systems on time scales

  • Original language description

    In this paper we introduce a new concept of antiprincipal solutions at infinity for symplectic systems on time scales. This concept complements the earlier notion of principal solutions at infinity for these systems by the second author and Sepitka (2016). We derive main properties of antiprincipal solutions at infinity, including their existence for all ranks in a given range and a construction from a certain minimal antiprincipal solution at infinity. We apply our new theory of antiprincipal solutions at infinity in the study of principal solutions, and in particular in the Reid construction of the minimal principal solution at infinity. In this work we do not assume any normality condition on the system, and we unify and extend to arbitrary time scales the theory of antiprincipal solutions at infinity of linear Hamiltonian differential systems and the theory of dominant solutions at infinity of symplectic difference systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Qualitative Theory of Differential Equations

  • ISSN

    1417-3875

  • e-ISSN

  • Volume of the periodical

    Neuveden

  • Issue of the periodical within the volume

    44

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    32

  • Pages from-to

    1-32

  • UT code for WoS article

    000544906500001

  • EID of the result in the Scopus database

    2-s2.0-85087375894