Extremal solutions at infinity for symplectic systems on time scales II - Existence theory and limit properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134236" target="_blank" >RIV/00216224:14310/23:00134236 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.7153/dea-2023-15-11" target="_blank" >http://dx.doi.org/10.7153/dea-2023-15-11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/dea-2023-15-11" target="_blank" >10.7153/dea-2023-15-11</a>
Alternative languages
Result language
angličtina
Original language name
Extremal solutions at infinity for symplectic systems on time scales II - Existence theory and limit properties
Original language description
In this paper we continue with our investigation of principal and antiprincipal solutions at infinity solutions of a dynamic symplectic system. The paper is a continuation of part I appeared in Differential Equations and Applications in 2022, where we have presenteded a theory of genera of conjoined bases for symplectic dynamic systems on time scales and its connections with principal solutions at infinity and antiprincipal solutions at infinity for these systems together with some basic properties of this new concept on time scales. Here we provide a characterization of all principal solutions of dynamic symplectic system at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus. Further, we provide a characterization of all antiprincipal solutions of dynamic symplectic system at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus. We also establish mutual limit properties of principal and antiprincipal solutions at infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Equations & Applications
ISSN
1847-120X
e-ISSN
1848-9605
Volume of the periodical
15
Issue of the periodical within the volume
3
Country of publishing house
HR - CROATIA
Number of pages
35
Pages from-to
179-213
UT code for WoS article
001084505400001
EID of the result in the Scopus database
—