Pure spinors, intrinsic torsion and curvature in odd dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094690" target="_blank" >RIV/00216224:14310/17:00094690 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.difgeo.2017.02.008" target="_blank" >http://dx.doi.org/10.1016/j.difgeo.2017.02.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2017.02.008" target="_blank" >10.1016/j.difgeo.2017.02.008</a>
Alternative languages
Result language
angličtina
Original language name
Pure spinors, intrinsic torsion and curvature in odd dimensions
Original language description
We study the geometric properties of a $(2m + 1)$-dimensional complex manifold $M$ admitting a holomorphic reduction of the frame bundle to the structure group $P subset Spin(2m + 1, C)$, the stabiliser of the line spanned by a pure spinor at a point. Geometrically, $M$ is endowed with a holomorphic metric $g$, a holomorphic volume form, a spin structure compatible with $g$, and a holomorphic pure spinor field $xi$ up to scale. The defining property of $xi$ is that it determines an almost null structure, i.e. an $m$-plane distribution $N_xi$ along which $g$ is totally degenerate. We develop a spinor calculus, by means of which we encode the geometric properties of $N_xi$ and of its rank-$(m + 1)$ orthogonal complement $N_xi^perp$ corresponding to the algebraic properties of the intrinsic torsion of the $P$-structure. This is the failure of the Levi-Civita connection $nabla$ of $g$ to be compatible with the $P$ -structure. In a similar way, we examine the algebraic properties of the curvature of $nabla$. Applications to spinorial differential equations are given. Notably, we relate the integrability properties of $N_xi$ and $N_xi^perp$ to the existence of solutions of odd- dimensional versions of the zero-rest-mass field equation. We give necessary and sufficient conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable. Finally, we conjecture a Goldberg–Sachs-type theorem on the existence of a certain class of almost null structures when $(M, g)$ has prescribed curvature. We discuss applications of this work to the study of real pseudo-Riemannian manifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GP14-27885P" target="_blank" >GP14-27885P: Almost null structures in pseudo-riemannian geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
April
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
36
Pages from-to
117-152
UT code for WoS article
000399856700011
EID of the result in the Scopus database
—