All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The complex Goldberg-Sachs theorem in higher dimensions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00064684" target="_blank" >RIV/00216224:14310/12:00064684 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0393044012000228" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0393044012000228</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomphys.2012.01.012" target="_blank" >10.1016/j.geomphys.2012.01.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The complex Goldberg-Sachs theorem in higher dimensions

  • Original language description

    We study the geometric properties of holomorphic distributions of totally null m-planes on a (2m + epsilon)-dimensional complex Riemannian manifold (M, g), where epsilon is an element of {0, 1} and m &gt;= 2. In particular, given such a distribution N, say, we obtain algebraic conditions on the Weyl tensor and the Cotton-York tensor which guarantee the integrability of N, and in odd dimensions, of its orthogonal complement. These results generalise the Petrov classification of the (anti-)self-dual partof the complex Weyl tensor, and the complex Goldberg-Sachs theorem from four to higher dimensions. Higher-dimensional analogues of the Petrov type D condition are defined, and we show that these lead to the integrability of up to 2(m) holomorphic distributions of totally null m-planes. Finally, we adapt these findings to the category of real smooth pseudo-Riemannian manifolds, commenting notably on the applications to Hermitian geometry and Robinson (or optical) geometry.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geometry and Physics

  • ISSN

    0393-0440

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    32

  • Pages from-to

    981-1012

  • UT code for WoS article

    000302527300005

  • EID of the result in the Scopus database