Optical structures, algebraically special spacetimes, and the Goldberg-Sachs theorem in five dimensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00064682" target="_blank" >RIV/00216224:14310/11:00064682 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/0264-9381/28/14/145010/" target="_blank" >http://iopscience.iop.org/0264-9381/28/14/145010/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/28/14/145010" target="_blank" >10.1088/0264-9381/28/14/145010</a>
Alternative languages
Result language
angličtina
Original language name
Optical structures, algebraically special spacetimes, and the Goldberg-Sachs theorem in five dimensions
Original language description
Optical (or Robinson) structures are one generalization of four-dimensional shearfree congruences of null geodesics to higher dimensions. They are Lorentzian analogues of complex and CR structures. In this context, we extend the Goldberg?Sachs theorem tofive dimensions. To be precise, we find a new algebraic condition on the Weyl tensor, which generalizes the Petrov type II condition, in the sense that it ensures the existence of such congruences on a five-dimensional spacetime, vacuum or under weakerassumptions on the Ricci tensor. This results in a significant simplification of the field equations. We discuss possible degenerate cases, including a five-dimensional generalization of the Petrov type D condition. We also show that the vacuum black ring solution is endowed with optical structures, yet fails to be algebraically special with respect to them. We finally explain the generalization of these ideas to higher dimensions, which has been checked in six and seven dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
14
Country of publishing house
GB - UNITED KINGDOM
Number of pages
32
Pages from-to
145010
UT code for WoS article
000291789300010
EID of the result in the Scopus database
—