Law of inertia for the factorization of cubic polynomials - the real case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094733" target="_blank" >RIV/00216224:14310/17:00094733 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/17:PU123250
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Law of inertia for the factorization of cubic polynomials - the real case
Original language description
Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Assume that D<0, D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)). We prove that all polynomials in C_D have the same type of factorization over any Galois field F_p, where p is a prime, p > 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0276" target="_blank" >GAP201/11/0276: Ideal class groups of algebraic number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Utilitas Mathematica
ISSN
0315-3681
e-ISSN
—
Volume of the periodical
102
Issue of the periodical within the volume
March
Country of publishing house
CA - CANADA
Number of pages
12
Pages from-to
39-50
UT code for WoS article
000398243200003
EID of the result in the Scopus database
—