Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00107140" target="_blank" >RIV/00216224:14310/17:00107140 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/17:PU123239
Result on the web
<a href="https://www.degruyter.com/view/j/ms.2017.67.issue-1/ms-2016-0248/ms-2016-0248.xml" target="_blank" >https://www.degruyter.com/view/j/ms.2017.67.issue-1/ms-2016-0248/ms-2016-0248.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2016-0248" target="_blank" >10.1515/ms-2016-0248</a>
Alternative languages
Result language
angličtina
Original language name
Law of inertia for the factorization of cubic polynomials - the case of primes 2 and 3
Original language description
Let D be an integer and let C_D be the set of all monic cubic polynomials x^3 + ax^2 + bx + c with integral coefficients and with the discriminant equal to D. Along the line of our preceding papers, the following Theorem has been proved: If D is square-free and 3 does not divide the class number of Q((-3D)^(1/2)), then all polynomials in C_D have the same type of factorization over the Galois field F_p where p is a prime, p > 3. In this paper, we prove the validity of the above implication also for primes 2 and 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0276" target="_blank" >GAP201/11/0276: Ideal class groups of algebraic number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
1337-2211
Volume of the periodical
67
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
71-82
UT code for WoS article
000399003900007
EID of the result in the Scopus database
2-s2.0-85017031003