All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quaternionic contact hypersurfaces in hyper-Kähler manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095899" target="_blank" >RIV/00216224:14310/17:00095899 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/article/10.1007/s10231-016-0571-x/fulltext.html" target="_blank" >http://link.springer.com/article/10.1007/s10231-016-0571-x/fulltext.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-016-0571-x" target="_blank" >10.1007/s10231-016-0571-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quaternionic contact hypersurfaces in hyper-Kähler manifolds

  • Original language description

    We describe explicitly all quaternionic contact hypersurfaces (qc-hypersurfaces) in the flat quaternion space Hn+1 and the quaternion projective space. We show that up to a quaternionic affine transformation a qc-hypersurface in Hn+1 is contained in one of the three qc-hyperquadrics in Hn+1. Moreover, we show that an embedded qc-hypersurface in a hyper-Kähler manifold is qc-conformal to a qc-Einstein space and the Riemannian curvature tensor of the ambient hyper-Kähler metric is degenerate along the hypersurface.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Volume of the periodical

    196

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    23

  • Pages from-to

    245-267

  • UT code for WoS article

    000393687100012

  • EID of the result in the Scopus database

    2-s2.0-85010888065