All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-Umbilical Quaternionic Contact Hypersurfaces in Hyper-Kahler Manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113472" target="_blank" >RIV/00216224:14310/19:00113472 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/imrn/article-abstract/2019/18/5649/4656168?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/imrn/article-abstract/2019/18/5649/4656168?redirectedFrom=fulltext</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imrn/rnx279" target="_blank" >10.1093/imrn/rnx279</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-Umbilical Quaternionic Contact Hypersurfaces in Hyper-Kahler Manifolds

  • Original language description

    It is shown that any compact quaternionic contact (qc) hypersurfaces in a hyper-Kahler manifold which is not totally umbilical has an induced qc structure, locally qc homothetic to the standard 3-Sasakian sphere. In the non-compact case, it is proved that a seven-dimensional everywhere non-umbilical qc-hypersurface embedded in a hyper-Kahler manifold is qc-conformal to a qc-Einstein structure which is locally qc-equivalent to the 3-Sasakian sphere, the quaternionic Heisenberg group or the hyperboloid.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Mathematics Research Notices. IMRN

  • ISSN

    1073-7928

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

    5649-5673

  • UT code for WoS article

    000493557300005

  • EID of the result in the Scopus database

    2-s2.0-85076455711