Focal points and principal solutions of linear Hamiltonian systems revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100766" target="_blank" >RIV/00216224:14310/18:00100766 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2018.01.016" target="_blank" >http://dx.doi.org/10.1016/j.jde.2018.01.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2018.01.016" target="_blank" >10.1016/j.jde.2018.01.016</a>
Alternative languages
Result language
angličtina
Original language name
Focal points and principal solutions of linear Hamiltonian systems revisited
Original language description
In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
264
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
36
Pages from-to
5541-5576
UT code for WoS article
000426147300002
EID of the result in the Scopus database
2-s2.0-85040322598