Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00089253" target="_blank" >RIV/00216224:14310/16:00089253 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2016.01.004" target="_blank" >http://dx.doi.org/10.1016/j.jde.2016.01.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2016.01.004" target="_blank" >10.1016/j.jde.2016.01.004</a>
Alternative languages
Result language
angličtina
Original language name
Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity
Original language description
In this paper we derive a general limit characterization of principal solutions at infinity of linear Hamiltonian systems under no controllability assumption. The main result is formulated in terms of a limit involving antiprincipal solutions at infinity of the system. The novelty lies in the fact that the principal and antiprincipal solutions at infinity may belong to two different genera of conjoined bases, i.e., the eventual image of their first components is not required to be the same as in the known literature. For this purpose we extend the theory of genera of conjoined bases, which was recently initiated by the authors. We show that the orthogonal projector representing each genus of conjoined bases satisfies a symmetric Riccati matrix differential equation. This result then leads to an exact description of the structure of the set of all genera, in particular it forms a complete lattice. We also provide several examples, which illustrate our new theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
260
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
6581-6603
UT code for WoS article
000371450000006
EID of the result in the Scopus database
—