All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Use of Drosophila for studying pathogen-insect interactions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100906" target="_blank" >RIV/00216224:14310/18:00100906 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Use of Drosophila for studying pathogen-insect interactions

  • Original language description

    Drosophila melanogaster is widely used model insect in genetics, development and diseases research which includes functional homologs of many human genes. There are many advantages of using fruit fly - the culture in laboratory conditions is cheap and easy, they produce large numbers of eggs, have short life cycle, and they can be genetically modified in numerous ways. To study host-pathogen interactions we used Drosophila larvae naturally infected by entomopathogenic nematodes and their associated bacteria. This nematobacterial complex (Heterorhabditis/Photorhabdus or Steinernema/Xenorhabdus) is highly pathogenic and is able to invade and kill insect host within two days. Both bacteria and nematodes produce a variety of factors interacting with the insect immune system and help to overcome host defences. Microarray analysis was used to compare gene expression of Drosophila larvae infected by the entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens with non-infected larvae. The role of candidate genes, selected based on genomic comparison, in response towards nematobacterial complex was further evaluated by in vivo infection assays using different Drosophila mutants or RNAi lines with defects in clotting or other branches of the immune system. We demonstrated an immune function during nematode infection for known clotting enzymes and substrates, recognition molecules and eicosanoids. In conclusion, we show that the tripartite infection model (Drosophila, nematodes, bacteria) is suitable to identify regulators of innate immunity in insects. Our research is supported by grant No. 17-03253S from the Czech Science Foundation.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10600 - Biological sciences

Result continuities

  • Project

    <a href="/en/project/GA17-03253S" target="_blank" >GA17-03253S: Hormonal control of insect defence system</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů