Singular Sturmian separation theorems for nonoscillatory symplectic difference systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101296" target="_blank" >RIV/00216224:14310/18:00101296 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/10236198.2018.1544247" target="_blank" >http://dx.doi.org/10.1080/10236198.2018.1544247</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2018.1544247" target="_blank" >10.1080/10236198.2018.1544247</a>
Alternative languages
Result language
angličtina
Original language name
Singular Sturmian separation theorems for nonoscillatory symplectic difference systems
Original language description
In this paper we derive new singular Sturmian separation theorems for nonoscillatory symplectic difference systems on unbounded intervals. The novelty of the presented theory resides in two aspects. We introduce the multiplicity of a focal point at infinity for conjoined bases, which we incorporate into our new singular Sturmian separation theorems. At the same time we do not impose any controllability assumption on the symplectic system. The presented results naturally extend and complete the known Sturmian separation theorems on bounded intervals by J. Elyseeva (2009), as well as the singular Sturmian separation theorems for eventually controllable symplectic systems on unbounded intervals by O. Dosly and J. Elyseeva (2014). Our approach is based on developing the theory of comparative index on unbounded intervals and on the recent theory of recessive and dominant solutions at infinity for possibly uncontrollable symplectic systems by the authors (2015 and 2017). Some of our results, including the notion of the multiplicity of a focal point at infinity, are new even for an eventually controllable symplectic difference system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
1563-5120
Volume of the periodical
24
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
41
Pages from-to
1894-1934
UT code for WoS article
000455587900004
EID of the result in the Scopus database
2-s2.0-85057566926