All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singular Sturmian comparison theorems for linear Hamiltonian systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114052" target="_blank" >RIV/00216224:14310/20:00114052 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039620300802?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620300802?dgcid=author</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2020.02.016" target="_blank" >10.1016/j.jde.2020.02.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singular Sturmian comparison theorems for linear Hamiltonian systems

  • Original language description

    In this paper we prove singular comparison theorems on unbounded intervals for two nonoscillatory linear Hamiltonian systems satisfying the Sturmian majorant condition and the Legendre condition. At the same time we do not impose any controllability condition. The results are phrased in terms of the comparative index and the numbers of proper focal points of the (minimal) principal solutions of these systems at both endpoints of the considered interval. The main idea is based on an application of new transformation theorems for principal and antiprincipal solutions at infinity and on new limit properties of the comparative index involving these solutions. This work generalizes the recently obtained Sturmian separation theorems on unbounded intervals for one system by the authors (2019), as well as the Sturmian comparison theorems and transformation theorems on compact intervals by J. Elyseeva (2016 and 2018). We note that all the results are new even in the completely controllable case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    269

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    36

  • Pages from-to

    2920-2955

  • UT code for WoS article

    000534488300007

  • EID of the result in the Scopus database

    2-s2.0-85080043194