Sturmian comparison theorems for completely controllable linear Hamiltonian systems in singular case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114075" target="_blank" >RIV/00216224:14310/20:00114075 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124030" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2020.124030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124030" target="_blank" >10.1016/j.jmaa.2020.124030</a>
Alternative languages
Result language
angličtina
Original language name
Sturmian comparison theorems for completely controllable linear Hamiltonian systems in singular case
Original language description
In this paper we consider two linear Hamiltonian differential systems on an open unbounded interval. We assume that the systems are completely controllable and satisfy the Sturmian majorant condition and the Legendre condition. We derive a singular Sturmian comparison theorem for the case when the minorant system has a solution, which is principal at both endpoints of the considered interval. The main result is new even for the second order differential equations and it generalizes the singular comparison theorem obtained by Aharonov and Elias (2010). We illustrate our new theory by several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
487
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000525905000032
EID of the result in the Scopus database
2-s2.0-85081689839