Infinitesimal Symmetries in Covariant Quantum Mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00103879" target="_blank" >RIV/00216224:14310/18:00103879 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-981-13-2179-5_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-13-2179-5_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-13-2179-5_25" target="_blank" >10.1007/978-981-13-2179-5_25</a>
Alternative languages
Result language
angličtina
Original language name
Infinitesimal Symmetries in Covariant Quantum Mechanics
Original language description
We discuss the Lie algebras of infinitesimal symmetries of the main covariant geometric objects of covariant quantum mechanics: the time form, the hermitian metric, the upper quantum connection, the quantum lagrangian. Indeed, these infinitesimal symmetries are generated, in a covariant way, by the Lie algebra of time preserving conserved special phase functions. Actually, this Lie algebra of special phase functions generates also the Lie algebra of infinitesimal symmetries of the main classical objects: the time form and the cosymplectic 2-form. A natural output of the classification of the quantum symmetries is a covariant approach to quantum operators and to quantum currents associated with special phase functions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
In book: Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics, Volume 2
ISBN
—
ISSN
2194-1009
e-ISSN
—
Number of pages
18
Pages from-to
319-336
Publisher name
Springer-Verlag
Place of publication
Německo
Event location
Německo
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—