Internal sizes in mu-abstract elementary classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107382" target="_blank" >RIV/00216224:14310/19:00107382 - isvavai.cz</a>
Result on the web
<a href="http://people.math.harvard.edu/~sebv/papers/lrv-sizes/lrv-sizes_v4.pdf" target="_blank" >http://people.math.harvard.edu/~sebv/papers/lrv-sizes/lrv-sizes_v4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2019.02.004" target="_blank" >10.1016/j.jpaa.2019.02.004</a>
Alternative languages
Result language
angličtina
Original language name
Internal sizes in mu-abstract elementary classes
Original language description
Working in the context of $mu$-abstract elementary classes or, equivalently, accessible categories with all morphisms monomorphisms, we examine the two natural notions of size that occur, namely cardinality of underlying sets and internal size. The latter, purely category-theoretic, notion generalizes e.g. density character in complete metric spaces and cardinality of orthogonal bases in Hilbert spaces. We consider the relationship between these notions under mild set-theoretic hypotheses, including weakenings of the singular cardinal hypothesis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Volume of the periodical
223
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
4560-4582
UT code for WoS article
000468715100022
EID of the result in the Scopus database
2-s2.0-85061802334