All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forking independence from the categorical point of view

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107285" target="_blank" >RIV/00216224:14310/19:00107285 - isvavai.cz</a>

  • Result on the web

    <a href="https://arxiv.org/abs/1801.09001" target="_blank" >https://arxiv.org/abs/1801.09001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2019.02.018" target="_blank" >10.1016/j.aim.2019.02.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forking independence from the categorical point of view

  • Original language description

    Forking is a central notion of model theory, generalizing linear independence in vector spaces and algebraic independence in fields. We develop the theory of forking in abstract, category-theoretic terms. In particular, we present an axiomatic definition of what we call a stable independence notion on a category and show that this is in fact a purely category-theoretic axiomatization of the properties of model-theoretic forking in a stable first-order theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathrmatics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Volume of the periodical

    346

  • Issue of the periodical within the volume

    APR 13 2019

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    54

  • Pages from-to

    719-772

  • UT code for WoS article

    000461538800018

  • EID of the result in the Scopus database

    2-s2.0-85061585010