Forking independence from the categorical point of view
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107285" target="_blank" >RIV/00216224:14310/19:00107285 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/1801.09001" target="_blank" >https://arxiv.org/abs/1801.09001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2019.02.018" target="_blank" >10.1016/j.aim.2019.02.018</a>
Alternative languages
Result language
angličtina
Original language name
Forking independence from the categorical point of view
Original language description
Forking is a central notion of model theory, generalizing linear independence in vector spaces and algebraic independence in fields. We develop the theory of forking in abstract, category-theoretic terms. In particular, we present an axiomatic definition of what we call a stable independence notion on a category and show that this is in fact a purely category-theoretic axiomatization of the properties of model-theoretic forking in a stable first-order theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathrmatics
ISSN
0001-8708
e-ISSN
1090-2082
Volume of the periodical
346
Issue of the periodical within the volume
APR 13 2019
Country of publishing house
US - UNITED STATES
Number of pages
54
Pages from-to
719-772
UT code for WoS article
000461538800018
EID of the result in the Scopus database
2-s2.0-85061585010