CELLULAR CATEGORIES AND STABLE INDEPENDENCE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146981" target="_blank" >RIV/00216305:26210/22:PU146981 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/23:00134133
Result on the web
<a href="http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177" target="_blank" >http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2022.40" target="_blank" >10.1017/jsl.2022.40</a>
Alternative languages
Result language
angličtina
Original language name
CELLULAR CATEGORIES AND STABLE INDEPENDENCE
Original language description
We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin-Eklof-Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF SYMBOLIC LOGIC
ISSN
0022-4812
e-ISSN
1943-5886
Volume of the periodical
18.05.2022
Issue of the periodical within the volume
18.05.2022
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
„“-„“
UT code for WoS article
000896800600001
EID of the result in the Scopus database
2-s2.0-85131130972