All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CELLULAR CATEGORIES AND STABLE INDEPENDENCE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146981" target="_blank" >RIV/00216305:26210/22:PU146981 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/23:00134133

  • Result on the web

    <a href="http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177" target="_blank" >http://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/cellular-categories-and-stable-independence/CAE1BCB1D51CBDFE69996abs5429970A177</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2022.40" target="_blank" >10.1017/jsl.2022.40</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CELLULAR CATEGORIES AND STABLE INDEPENDENCE

  • Original language description

    We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin-Eklof-Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF SYMBOLIC LOGIC

  • ISSN

    0022-4812

  • e-ISSN

    1943-5886

  • Volume of the periodical

    18.05.2022

  • Issue of the periodical within the volume

    18.05.2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    „“-„“

  • UT code for WoS article

    000896800600001

  • EID of the result in the Scopus database

    2-s2.0-85131130972