Induced and higher-dimensional stable independence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144748" target="_blank" >RIV/00216305:26210/22:PU144748 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/22:00129044
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0168007222000392" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168007222000392</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2022.103124" target="_blank" >10.1016/j.apal.2022.103124</a>
Alternative languages
Result language
angličtina
Original language name
Induced and higher-dimensional stable independence
Original language description
We provide several crucial technical extensions of the theory of stable independence notions in accessible categories. In particular, we describe circumstances under which a stable independence notion can be transferred from a subcategory to a category as a whole, and examine a number of applications to categories of groups and modules, extending results of [16]. We prove, too, that under the hypotheses of [11], a stable independence notion immediately yields higherdimensional independence as in [26].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANNALS OF PURE AND APPLIED LOGIC
ISSN
0168-0072
e-ISSN
1873-2461
Volume of the periodical
173
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000795198800004
EID of the result in the Scopus database
2-s2.0-85128530798