Nematodes as a tool to study insect immunity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107461" target="_blank" >RIV/00216224:14310/19:00107461 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Nematodes as a tool to study insect immunity
Original language description
Invertebrates and especially insects belong to the ecologically most successful organisms living on Earth. An adaptation to the antigen pressure of the environment (mainly to micro-organisms) depends on insect innate immunity. Invertebrates compensated the absence of complicated immune reactions by specific adaptations and functions of cellular and humoral parts of their immune system. Although an adaptive immunity in the form we know in vertebrates does not exist in invertebrates, there are advanced mechanisms modulating their immune response. Presented studies on fruit fly Drosophila melanogaster, wax moth Galleria mellonella and honey bee Apis mellifera describe cellular and humoral components of their immune system and methods for their measurement. In many experiments we used natural infection model combining two pathogens – bacteria Photorhabdus luminescens and nematode Heterorhabditis bacteriophora with their insect host. New mechanisms of insect immune response to nematobacterial pathogens were identified. Not surprisingly, among the genes significantly affected by the nematobacterial infection, mostly those related to immunity, cellular and developmental processes were found to be crucial, e.g. genes coding for members of coagulation cascade and recognition molecules. This study was supported by grant GAČR 17 - 03253S.
Czech name
Nematodes as a tool to study insect immunity
Czech description
Invertebrates and especially insects belong to the ecologically most successful organisms living on Earth. An adaptation to the antigen pressure of the environment (mainly to micro-organisms) depends on insect innate immunity. Invertebrates compensated the absence of complicated immune reactions by specific adaptations and functions of cellular and humoral parts of their immune system. Although an adaptive immunity in the form we know in vertebrates does not exist in invertebrates, there are advanced mechanisms modulating their immune response. Presented studies on fruit fly Drosophila melanogaster, wax moth Galleria mellonella and honey bee Apis mellifera describe cellular and humoral components of their immune system and methods for their measurement. In many experiments we used natural infection model combining two pathogens – bacteria Photorhabdus luminescens and nematode Heterorhabditis bacteriophora with their insect host. New mechanisms of insect immune response to nematobacterial pathogens were identified. Not surprisingly, among the genes significantly affected by the nematobacterial infection, mostly those related to immunity, cellular and developmental processes were found to be crucial, e.g. genes coding for members of coagulation cascade and recognition molecules. This study was supported by grant GAČR 17 - 03253S.
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
40301 - Veterinary science
Result continuities
Project
<a href="/en/project/GA17-03253S" target="_blank" >GA17-03253S: Hormonal control of insect defence system</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů