All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolution of N(^4S) atoms produced under nitrogen streamer conditions: time-resolved TALIF study at reduced pressures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107845" target="_blank" >RIV/00216224:14310/19:00107845 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ab36a5" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ab36a5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ab36a5" target="_blank" >10.1088/1361-6595/ab36a5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolution of N(^4S) atoms produced under nitrogen streamer conditions: time-resolved TALIF study at reduced pressures

  • Original language description

    The evolution of N(4S) species produced by filamentary streamer discharge was investigated by two-photon absorption laser-induced fluorescence technique. A triggered single streamer filament was periodically produced in pure nitrogen at pressures of 20, 50, 100 and 200 Torr, and N(4S) species were monitored in the center of the discharge gap during the streamer formation, decay and afterglow. Under all of the investigated pressures, the population maxima of nitrogen atoms were observed in a microsecond timescale; i.e. well after the extinction of the streamer event. The concentration of nitrogen atoms increased with pressure. The maximum N( 4 S) concentration measured at 20 Torr was about 10^13 cm-3 , while it exceeded 10^15 cm-3 at 200 Torr. After reaching maxima, atomic densities exhibit hyperbolic decay, which was followed up to the post-discharge time of 0.5 ms. Our results show that only a small part of N(4S) is produced during the streamer transit or within 200 ns after the transit (20% - 25% increase with respect to the background density), while most of the nitrogen N(4S) atoms are produced during the streamer channel decay in timescales from units to several tens of microseconds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science and Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000519108900004

  • EID of the result in the Scopus database

    2-s2.0-85080880932