All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00110545" target="_blank" >RIV/00216224:14310/19:00110545 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/abs/10.1021/acsami.9b09649" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acsami.9b09649</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.9b09649" target="_blank" >10.1021/acsami.9b09649</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity

  • Original language description

    A rapid increase in the number of antibiotic-resistant bacteria urgently requires the development of new more effective yet safe materials to fight infection. Herein, we uncovered the contribution of different metal nanoparticles (NPs) (Pt, Fe, and their combination) homogeneously distributed over the surface of nanostructured TiCaPCON films in the total antibacterial activity toward eight types of clinically isolated bacterial strains (Escherichia coli K261, Klebsiella pneumoniae B1079k/17-3, Acinetobacter baumannii B1280A/17, Staphylococcus aureus no. 839, Staphylococcus epidermidis i5189-1, Enterococcus faecium Ya-235: VanA, E. faecium I-237: VanA, and E. coli U20) taking into account various factors that can affect bacterial mechanisms: surface chemistry and phase composition, wettability, ion release, generation of reactive oxygen species (ROS), potential difference and polarity change between NPs and the surrounding matrix, formation of microgalvanic couples on the sample surfaces, and contribution of a passive oxide layer, formed on the surface of films, to general kinetics of the NP dissolution. The results indicated that metal ion implantation and subsequent annealing significantly changed the chemistry of the TiCaPCON film surface. This, in turn, greatly affected the shedding of ions, ROS formation, potential difference between film components, and antibacterial activity. The presence of NPs was critical for ROS generation under UV or daylight irradiation. By eliminating the potential contribution of ions and ROS, we have shown that bacteria can be killed using direct microgalvanic interactions. The possibility of charge redistribution at the interfaces between Pt NPs and TiO2 (anatase and rutile), TiC, TiN, and TiCN components was demonstrated using density functional theory calculations. The TiCaPCON-supported Pt and Fe NPs were not toxic for lymphocytes and had no effect on the ability of lymphocytes to activate in response to a mitogen. This study provides new insights into understanding and designing of antibacterial yet biologically safe surfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials & Interfaces

  • ISSN

    1944-8244

  • e-ISSN

    1944-8252

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    32

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    28699-28719

  • UT code for WoS article

    000481567100012

  • EID of the result in the Scopus database

    2-s2.0-85070892341