All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Projective geometry of Sasaki-Einstein structures and their compactification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00114700" target="_blank" >RIV/00216224:14310/19:00114700 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/113324/projective-geometry-of-sasaki-einstein-structures-and-their-compactification" target="_blank" >https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/113324/projective-geometry-of-sasaki-einstein-structures-and-their-compactification</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/dm786-7-2019" target="_blank" >10.4064/dm786-7-2019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Projective geometry of Sasaki-Einstein structures and their compactification

  • Original language description

    We show that the standard definitions of Sasaki structures have elegant and simplifying interpretations in terms of projective differential geometry. For Sasaki-Einstein structures we use projective geometry to provide a resolution of such structures into geometrically less rigid components; the latter elemental components are separately, complex, orthogonal, and symplectic holonomy reductions of the canonical projective tractor/Cartan connection. This leads to a characterisation of Sasaki-Einstein structures as projective structures with certain unitary holonomy reductions. As an immediate application, this is used to describe the projective compactification of indefinite (suitably) complete noncompact Sasaki-Einstein structures and to prove that the boundary at infinity is a Fefferman conformal manifold that thus fibres over a nondegenerate CR manifold (of hypersurface type). We prove that this CR manifold coincides with the boundary at infinity for the c-projective compactification of the Kahler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold. A procedure for constructing examples is given. The discussion of symplectic holonomy reductions of projective structures leads us moreover to a new and simplifying approach to contact projective geometry. This is of independent interest and is treated in some detail.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Dissertationes Mathematicae

  • ISSN

    0012-3862

  • e-ISSN

    1730-6310

  • Volume of the periodical

    546

  • Issue of the periodical within the volume

    2019

  • Country of publishing house

    PL - POLAND

  • Number of pages

    64

  • Pages from-to

    1-64

  • UT code for WoS article

    000559966700001

  • EID of the result in the Scopus database

    2-s2.0-85078587080