The Boundary Value Problem for Laplacian on Differential Forms and Conformal Einstein Infinity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10367260" target="_blank" >RIV/00216208:11320/18:10367260 - isvavai.cz</a>
Result on the web
<a href="https://www.omicsonline.org/open-access/the-boundary-value-problem-for-laplacian-on-differential-forms-and-conformal-einstein-infinity-1736-4337-1000256.php?aid=87909" target="_blank" >https://www.omicsonline.org/open-access/the-boundary-value-problem-for-laplacian-on-differential-forms-and-conformal-einstein-infinity-1736-4337-1000256.php?aid=87909</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4172/1736-4337.1000256" target="_blank" >10.4172/1736-4337.1000256</a>
Alternative languages
Result language
angličtina
Original language name
The Boundary Value Problem for Laplacian on Differential Forms and Conformal Einstein Infinity
Original language description
We completely resolve the boundary value problem for differential forms for conformal Einstein infinity in terms of the dual Hahn polynomials. Consequently, we present explicit formulas for the Branson-Gover operators on Einstein manifolds and prove their representation as a product of second order operators. This leads to an explicit description of Q-curvature and gauge companion operators on differential forms.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Generalized Lie Theory and Applications
ISSN
1736-5279
e-ISSN
—
Volume of the periodical
2017
Issue of the periodical within the volume
Volume 11, Issue 1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1-12
UT code for WoS article
—
EID of the result in the Scopus database
—