All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Field cyanobacterial blooms producing retinoid compounds cause teratogenicity in zebrafish embryos

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114082" target="_blank" >RIV/00216224:14310/20:00114082 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.chemosphere.2019.125061" target="_blank" >https://doi.org/10.1016/j.chemosphere.2019.125061</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2019.125061" target="_blank" >10.1016/j.chemosphere.2019.125061</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Field cyanobacterial blooms producing retinoid compounds cause teratogenicity in zebrafish embryos

  • Original language description

    Cyanobacteria routinely release potentially harmful bioactive compounds into the aquatic environment. Several recent studies suggested a potential link between the teratogenicity of effects caused by cyanobacteria and production of retinoids. To investigate this relationship, we analysed the teratogenicity of field-collected cyanobacterial bloom samples by means of an in vivo zebrafish embryo test, an in vitro reporter gene bioassay and by the chemical analysis of retinoids. Extracts of biomass from cyanobacterial blooms with the dominance of Microcystis aeruginosa and Aphanizomenon klebahnii were collected from water bodies in the Czech Republic and showed significant retinoid-like activity in vitro, as well as high degrees of teratogenicity in vivo. Chemical analysis was then used to identify a set of retinoids in ng per gram of dry weight concentration range. Subsequent fractionation and bioassay-based characterization identified two fractions with significant in vitro retinoid-like activity. Moreover, in most of the retinoids eluted from these fractions, teratogenicity with malformations typical for retinoid signalling disruption was observed in zebrafish embryos after exposure to the total extracts and these in vitro effective fractions. The zebrafish embryo test proved to be a sensitive toxicity indicator of the biomass extracts, as the teratogenic effects occurred at even lower concentrations than those expected from the activity detected in vitro. In fact, teratogenicity with retinoid-like activity was detected at concentrations that are commonly found in biomasses and even in bulk water surrounding cyanobacterial blooms. Overall, these results provide evidence of a link between retinoid-like activity, teratogenicity and the retinoids produced by cyanobacterial water blooms in the surrounding environment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemosphere

  • ISSN

    0045-6535

  • e-ISSN

    1879-1298

  • Volume of the periodical

    241

  • Issue of the periodical within the volume

    FEB 2020

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000509791600051

  • EID of the result in the Scopus database

    2-s2.0-85073300896